Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulated Annealing with Levy Distribution for Fast Matrix Factorization-Based Collaborative Filtering (1708.02867v1)

Published 9 Aug 2017 in cs.LG, cs.IR, and stat.ML

Abstract: Matrix factorization is one of the best approaches for collaborative filtering, because of its high accuracy in presenting users and items latent factors. The main disadvantages of matrix factorization are its complexity, and being very hard to be parallelized, specially with very large matrices. In this paper, we introduce a new method for collaborative filtering based on Matrix Factorization by combining simulated annealing with levy distribution. By using this method, good solutions are achieved in acceptable time with low computations, compared to other methods like stochastic gradient descent, alternating least squares, and weighted non-negative matrix factorization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.