Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dual Quadrics from Object Detection BoundingBoxes as Landmark Representations in SLAM (1708.00965v1)

Published 3 Aug 2017 in cs.RO

Abstract: Research in Simultaneous Localization And Mapping (SLAM) is increasingly moving towards richer world representations involving objects and high level features that enable a semantic model of the world for robots, potentially leading to a more meaningful set of robot-world interactions. Many of these advances are grounded in state-of-the-art computer vision techniques primarily developed in the context of image-based benchmark datasets, leaving several challenges to be addressed in adapting them for use in robotics. In this paper, we derive a formulation for Simultaneous Localization And Mapping (SLAM) that uses dual quadrics as 3D landmark representations, and show how 2D bounding boxes (such as those typically obtained from visual object detection systems) can directly constrain the quadric parameters. Our paper demonstrates how to jointly estimate the robot pose and dual quadric parameters in factor graph based SLAM with a general perspective camera, and covers the use-cases of a robot moving with a monocular camera with and without the availability of additional depth information.

Citations (16)

Summary

We haven't generated a summary for this paper yet.