2000 character limit reached
Identification of Treatment Effects under Conditional Partial Independence
Published 29 Jul 2017 in stat.ME and econ.EM | (1707.09563v1)
Abstract: Conditional independence of treatment assignment from potential outcomes is a commonly used but nonrefutable assumption. We derive identified sets for various treatment effect parameters under nonparametric deviations from this conditional independence assumption. These deviations are defined via a conditional treatment assignment probability, which makes it straightforward to interpret. Our results can be used to assess the robustness of empirical conclusions obtained under the baseline conditional independence assumption.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.