Papers
Topics
Authors
Recent
2000 character limit reached

Stock Prediction: a method based on extraction of news features and recurrent neural networks

Published 19 Jul 2017 in q-fin.ST, cs.CL, cs.IR, and cs.LG | (1707.07585v1)

Abstract: This paper proposed a method for stock prediction. In terms of feature extraction, we extract the features of stock-related news besides stock prices. We first select some seed words based on experience which are the symbols of good news and bad news. Then we propose an optimization method and calculate the positive polar of all words. After that, we construct the features of news based on the positive polar of their words. In consideration of sequential stock prices and continuous news effects, we propose a recurrent neural network model to help predict stock prices. Compared to SVM classifier with price features, we find our proposed method has an over 5% improvement on stock prediction accuracy in experiments.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.