Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dictionary Learning and Sparse Coding-based Denoising for High-Resolution Task Functional Connectivity MRI Analysis (1707.06962v1)

Published 21 Jul 2017 in cs.LG and stat.ML

Abstract: We propose a novel denoising framework for task functional Magnetic Resonance Imaging (tfMRI) data to delineate the high-resolution spatial pattern of the brain functional connectivity via dictionary learning and sparse coding (DLSC). In order to address the limitations of the unsupervised DLSC-based fMRI studies, we utilize the prior knowledge of task paradigm in the learning step to train a data-driven dictionary and to model the sparse representation. We apply the proposed DLSC-based method to Human Connectome Project (HCP) motor tfMRI dataset. Studies on the functional connectivity of cerebrocerebellar circuits in somatomotor networks show that the DLSC-based denoising framework can significantly improve the prominent connectivity patterns, in comparison to the temporal non-local means (tNLM)-based denoising method as well as the case without denoising, which is consistent and neuroscientifically meaningful within motor area. The promising results show that the proposed method can provide an important foundation for the high-resolution functional connectivity analysis, and provide a better approach for fMRI preprocessing.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube