Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Multi-kernel learning of deep convolutional features for action recognition (1707.06923v2)

Published 21 Jul 2017 in cs.CV and stat.ML

Abstract: Image understanding using deep convolutional network has reached human-level performance, yet a closely related problem of video understanding especially, action recognition has not reached the requisite level of maturity. We combine multi-kernels based support-vector-machines (SVM) with a multi-stream deep convolutional neural network to achieve close to state-of-the-art performance on a 51-class activity recognition problem (HMDB-51 dataset); this specific dataset has proved to be particularly challenging for deep neural networks due to the heterogeneity in camera viewpoints, video quality, etc. The resulting architecture is named pillar networks as each (very) deep neural network acts as a pillar for the hierarchical classifiers. In addition, we illustrate that hand-crafted features such as improved dense trajectories (iDT) and Multi-skip Feature Stacking (MIFS), as additional pillars, can further supplement the performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.