Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Exploiting Convolutional Representations for Multiscale Human Settlement Detection (1707.05683v1)

Published 18 Jul 2017 in cs.CV

Abstract: We test this premise and explore representation spaces from a single deep convolutional network and their visualization to argue for a novel unified feature extraction framework. The objective is to utilize and re-purpose trained feature extractors without the need for network retraining on three remote sensing tasks i.e. superpixel mapping, pixel-level segmentation and semantic based image visualization. By leveraging the same convolutional feature extractors and viewing them as visual information extractors that encode different image representation spaces, we demonstrate a preliminary inductive transfer learning potential on multiscale experiments that incorporate edge-level details up to semantic-level information.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube