Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Convergence analysis of Adaptive Biasing Potential methods for diffusion processes (1707.04880v2)

Published 16 Jul 2017 in math.PR

Abstract: This article is concerned with the mathematical analysis of a family of adaptive importance sampling algorithms applied to diffusion processes. These methods, referred to as Adaptive Biasing Potential methods, are designed to efficiently sample the invariant distribution of the diffusion process, thanks to the approximation of the associated free energy function (relative to a reaction coordinate). The bias which is introduced in the dynamics is computed adaptively; it depends on the past of the trajectory of the process through some time-averages. We give a detailed and general construction of such methods. We prove the consistency of the approach (almost sure convergence of well-chosen weighted empirical probability distribution). We justify the efficiency thanks to several qualitative and quantitative additional arguments. To prove these results , we revisit and extend tools from stochastic approximation applied to self-interacting diffusions, in an original context.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.