Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overcoming Catastrophic Interference by Conceptors (1707.04853v2)

Published 16 Jul 2017 in cs.NE and cs.LG

Abstract: Catastrophic interference has been a major roadblock in the research of continual learning. Here we propose a variant of the back-propagation algorithm, "conceptor-aided back-prop" (CAB), in which gradients are shielded by conceptors against degradation of previously learned tasks. Conceptors have their origin in reservoir computing, where they have been previously shown to overcome catastrophic forgetting. CAB extends these results to deep feedforward networks. On the disjoint MNIST task CAB outperforms two other methods for coping with catastrophic interference that have recently been proposed in the deep learning field.

Citations (13)

Summary

We haven't generated a summary for this paper yet.