Papers
Topics
Authors
Recent
Search
2000 character limit reached

The speed of sequential asymptotic learning

Published 10 Jul 2017 in math.PR and econ.TH | (1707.02689v3)

Abstract: In the classical herding literature, agents receive a private signal regarding a binary state of nature, and sequentially choose an action, after observing the actions of their predecessors. When the informativeness of private signals is unbounded, it is known that agents converge to the correct action and correct belief. We study how quickly convergence occurs, and show that it happens more slowly than it does when agents observe signals. However, we also show that the speed of learning from actions can be arbitrarily close to the speed of learning from signals. In particular, the expected time until the agents stop taking the wrong action can be either finite or infinite, depending on the private signal distribution. In the canonical case of Gaussian private signals we calculate the speed of convergence precisely, and show explicitly that, in this case, learning from actions is significantly slower than learning from signals.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.