Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Video Representation Learning and Latent Concept Mining for Large-scale Multi-label Video Classification (1707.01408v3)

Published 5 Jul 2017 in cs.CV

Abstract: We report on CMU Informedia Lab's system used in Google's YouTube 8 Million Video Understanding Challenge. In this multi-label video classification task, our pipeline achieved 84.675% and 84.662% GAP on our evaluation split and the official test set. We attribute the good performance to three components: 1) Refined video representation learning with residual links and hypercolumns 2) Latent concept mining which captures interactions among concepts. 3) Learning with temporal segments and weighted multi-model ensemble. We conduct experiments to validate and analyze the contribution of our models. We also share some unsuccessful trials leveraging conventional approaches such as recurrent neural networks for video representation learning for this large-scale video dataset. All the codes to reproduce our results are publicly available at https://github.com/Martini09/informedia-yt8m-release.

Citations (8)

Summary

We haven't generated a summary for this paper yet.