Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple VLAD encoding of CNNs for image classification (1707.00058v1)

Published 30 Jun 2017 in cs.CV

Abstract: Despite the effectiveness of convolutional neural networks (CNNs) especially in image classification tasks, the effect of convolution features on learned representations is still limited. It mostly focuses on the salient object of the images, but ignores the variation information on clutter and local. In this paper, we propose a special framework, which is the multiple VLAD encoding method with the CNNs features for image classification. Furthermore, in order to improve the performance of the VLAD coding method, we explore the multiplicity of VLAD encoding with the extension of three kinds of encoding algorithms, which are the VLAD-SA method, the VLAD-LSA and the VLAD-LLC method. Finally, we equip the spatial pyramid patch (SPM) on VLAD encoding to add the spatial information of CNNs feature. In particular, the power of SPM leads our framework to yield better performance compared to the existing method.

Citations (23)

Summary

We haven't generated a summary for this paper yet.