Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fairer and more accurate, but for whom? (1707.00046v1)

Published 30 Jun 2017 in stat.AP, cs.CY, and stat.ML

Abstract: Complex statistical machine learning models are increasingly being used or considered for use in high-stakes decision-making pipelines in domains such as financial services, health care, criminal justice and human services. These models are often investigated as possible improvements over more classical tools such as regression models or human judgement. While the modeling approach may be new, the practice of using some form of risk assessment to inform decisions is not. When determining whether a new model should be adopted, it is therefore essential to be able to compare the proposed model to the existing approach across a range of task-relevant accuracy and fairness metrics. Looking at overall performance metrics, however, may be misleading. Even when two models have comparable overall performance, they may nevertheless disagree in their classifications on a considerable fraction of cases. In this paper we introduce a model comparison framework for automatically identifying subgroups in which the differences between models are most pronounced. Our primary focus is on identifying subgroups where the models differ in terms of fairness-related quantities such as racial or gender disparities. We present experimental results from a recidivism prediction task and a hypothetical lending example.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alexandra Chouldechova (46 papers)
  2. Max G'Sell (12 papers)
Citations (62)