Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Differential Testing for Variational Analyses: Experience from Developing KConfigReader (1706.09357v1)

Published 28 Jun 2017 in cs.SE

Abstract: Differential testing to solve the oracle problem has been applied in many scenarios where multiple supposedly equivalent implementations exist, such as multiple implementations of a C compiler. If the multiple systems disagree on the output for a given test input, we have likely discovered a bug without every having to specify what the expected output is. Research on variational analyses (or variability-aware or family-based analyses) can benefit from similar ideas. The goal of most variational analyses is to perform an analysis, such as type checking or model checking, over a large number of configurations much faster than an existing traditional analysis could by analyzing each configuration separately. Variational analyses are very suitable for differential testing, since the existence nonvariational analysis can provide the oracle for test cases that would otherwise be tedious or difficult to write. In this experience paper, I report how differential testing has helped in developing KConfigReader, a tool for translating the Linux kernel's kconfig model into a propositional formula. Differential testing allows us to quickly build a large test base and incorporate external tests that avoided many regressions during development and made KConfigReader likely the most precise kconfig extraction tool available.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)