Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

On the Komlós, Major and Tusnády strong approximation for some classes of random iterates (1706.08282v1)

Published 26 Jun 2017 in math.PR

Abstract: The famous results of Koml\'os, Major and Tusn\'ady (see [15] and [17]) state that it is possible to approximate almost surely the partial sums of size n of i.i.d. centered random variables in L p (p > 2) by a Wiener process with an error term of order o(n 1/p). Very recently, Berkes, Liu and Wu [3] extended this famous result to partial sums associated with functions of an i.i.d. sequence, provided a condition on a functional dependence measure in L p is satisfied. In this paper, we adapt the method of Berkes, Liu and Wu to partial sums of functions of random iterates. Taking advantage of the Markovian setting, we shall give new dependent conditions, expressed in terms of a natural coupling (in L $\infty$ or in L 1), under which the strong approximation result holds with rate o(n 1/p). As we shall see our conditions are well adapted to a large variety of models, including left random walks on GL d (R), contracting iterated random functions, autoregressive Lipschitz processes, and some ergodic Markov chains. We also provide some examples showing that our L 1-coupling condition is in some sense optimal.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.