Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong Approximations for Empirical Processes Indexed by Lipschitz Functions (2406.04191v2)

Published 6 Jun 2024 in math.ST, econ.EM, math.PR, stat.ME, and stat.TH

Abstract: This paper presents new uniform Gaussian strong approximations for empirical processes indexed by classes of functions based on $d$-variate random vectors ($d\geq1$). First, a uniform Gaussian strong approximation is established for general empirical processes indexed by possibly Lipschitz functions, improving on previous results in the literature. In the setting considered by Rio (1994), and if the function class is Lipschitzian, our result improves the approximation rate $n{-1/(2d)}$ to $n{-1/\max{d,2}}$, up to a $\operatorname{polylog}(n)$ term, where $n$ denotes the sample size. Remarkably, we establish a valid uniform Gaussian strong approximation at the rate $n{-1/2}\log n$ for $d=2$, which was previously known to be valid only for univariate ($d=1$) empirical processes via the celebrated Hungarian construction (Koml\'os et al., 1975). Second, a uniform Gaussian strong approximation is established for multiplicative separable empirical processes indexed by possibly Lipschitz functions, which addresses some outstanding problems in the literature (Chernozhukov et al., 2014, Section 3). Finally, two other uniform Gaussian strong approximation results are presented when the function class is a sequence of Haar basis based on quasi-uniform partitions. Applications to nonparametric density and regression estimation are discussed.

Summary

We haven't generated a summary for this paper yet.