Papers
Topics
Authors
Recent
2000 character limit reached

Spectral Form Factor in Non-Gaussian Random Matrix Theories (1706.07439v3)

Published 22 Jun 2017 in hep-th

Abstract: We consider Random Matrix Theories with non-Gaussian potentials that have a rich phase structure in the large $N$ limit. We calculate the Spectral Form Factor (SFF) in such models and present them as interesting examples of dynamical models that display multi-criticality at short time-scales and universality at large time scales. The models with quartic and sextic potentials are explicitly worked out. The disconnected part of the Spectral Form Factor (SFF) shows a change in its decay behavior exactly at the critical points of each model. The dip-time of the SFF is estimated in each of these models. The late time behavior of all polynomial potential matrix models is shown to display a certain universality. This is related to the universality in the short distance correlations of the mean-level densities. We speculate on the implications of such universality for chaotic quantum systems including the SYK model.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.