Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Convolutional Neural Networks in Robots with Limited Computational Resources: Detecting NAO Robots while Playing Soccer (1706.06702v1)

Published 20 Jun 2017 in cs.CV

Abstract: The main goal of this paper is to analyze the general problem of using Convolutional Neural Networks (CNNs) in robots with limited computational capabilities, and to propose general design guidelines for their use. In addition, two different CNN based NAO robot detectors that are able to run in real-time while playing soccer are proposed. One of the detectors is based on the XNOR-Net and the other on the SqueezeNet. Each detector is able to process a robot object-proposal in ~1ms, with an average number of 1.5 proposals per frame obtained by the upper camera of the NAO. The obtained detection rate is ~97%.

Citations (35)

Summary

We haven't generated a summary for this paper yet.