Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Sensory Data in Estimating Transformer Lifetime (1706.06255v1)

Published 20 Jun 2017 in cs.SY

Abstract: Transformer lifetime assessments plays a vital role in reliable operation of power systems. In this paper, leveraging sensory data, an approach in estimating transformer lifetime is presented. The winding hottest-spot temperature, which is the pivotal driver that impacts transformer aging, is measured hourly via a temperature sensor, then transformer loss of life is calculated based on the IEEE Std. C57.91-2011. A Cumulative Moving Average (CMA) model is subsequently applied to the data stream of the transformer loss of life to provide hourly estimates until convergence. Numerical examples demonstrate the effectiveness of the proposed approach for the transformer lifetime estimation, and explores its efficiency and practical merits.

Citations (5)

Summary

We haven't generated a summary for this paper yet.