Papers
Topics
Authors
Recent
2000 character limit reached

Machine Learning Applications in Estimating Transformer Loss of Life

Published 4 Mar 2017 in cs.SY | (1703.01397v1)

Abstract: Transformer life assessment and failure diagnostics have always been important problems for electric utility companies. Ambient temperature and load profile are the main factors which affect aging of the transformer insulation, and consequently, the transformer lifetime. The IEEE Std. C57.911995 provides a model for calculating the transformer loss of life based on ambient temperature and transformer's loading. In this paper, this standard is used to develop a data-driven static model for hourly estimation of the transformer loss of life. Among various machine learning methods for developing this static model, the Adaptive Network-Based Fuzzy Inference System (ANFIS) is selected. Numerical simulations demonstrate the effectiveness and the accuracy of the proposed ANFIS method compared with other relevant machine learning based methods to solve this problem.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.