Papers
Topics
Authors
Recent
2000 character limit reached

Sequential detection of low-rank changes using extreme eigenvalues

Published 15 Jun 2017 in math.ST, stat.ML, and stat.TH | (1706.04729v1)

Abstract: We study the problem of detecting an abrupt change to the signal covariance matrix. In particular, the covariance changes from a "white" identity matrix to an unknown spiked or low-rank matrix. Two sequential change-point detection procedures are presented, based on the largest and the smallest eigenvalues of the sample covariance matrix. To control false-alarm-rate, we present an accurate theoretical approximation to the average-run-length (ARL) and expected detection delay (EDD) of the detection, leveraging the extreme eigenvalue distributions from random matrix theory and by capturing a non-negligible temporal correlation in the sequence of scan statistics due to the sliding window approach. Real data examples demonstrate the good performance of our method for detecting behavior change of a swarm.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.