Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fluctuations of spiked random matrix models and failure diagnosis in sensor networks (1107.1409v2)

Published 7 Jul 2011 in cs.IT and math.IT

Abstract: In this article, the joint fluctuations of the extreme eigenvalues and eigenvectors of a large dimensional sample covariance matrix are analyzed when the associated population covariance matrix is a finite-rank perturbation of the identity matrix, corresponding to the so-called spiked model in random matrix theory. The asymptotic fluctuations, as the matrix size grows large, are shown to be intimately linked with matrices from the Gaussian unitary ensemble (GUE). When the spiked population eigenvalues have unit multiplicity, the fluctuations follow a central limit theorem. This result is used to develop an original framework for the detection and diagnosis of local failures in large sensor networks, for known or unknown failure magnitude.

Citations (53)

Summary

We haven't generated a summary for this paper yet.