Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Submodular Maximization with Limited Information (1706.04082v1)

Published 12 Jun 2017 in cs.DS and cs.SY

Abstract: We consider a class of distributed submodular maximization problems in which each agent must choose a single strategy from its strategy set. The global objective is to maximize a submodular function of the strategies chosen by each agent. When choosing a strategy, each agent has access to only a limited number of other agents' choices. For each of its strategies, an agent can evaluate its marginal contribution to the global objective given its information. The main objective is to investigate how this limitation of information about the strategies chosen by other agents affects the performance when agents make choices according to a local greedy algorithm. In particular, we provide lower bounds on the performance of greedy algorithms for submodular maximization, which depend on the clique number of a graph that captures the information structure. We also characterize graph-theoretic upper bounds in terms of the chromatic number of the graph. Finally, we demonstrate how certain graph properties limit the performance of the greedy algorithm. Simulations on several common models for random networks demonstrate our results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bahman Gharesifard (46 papers)
  2. Stephen L. Smith (69 papers)
Citations (60)

Summary

We haven't generated a summary for this paper yet.