Papers
Topics
Authors
Recent
2000 character limit reached

Fast Approximate Spectral Clustering for Dynamic Networks

Published 12 Jun 2017 in stat.ML and math.SP | (1706.03591v1)

Abstract: Spectral clustering is a widely studied problem, yet its complexity is prohibitive for dynamic graphs of even modest size. We claim that it is possible to reuse information of past cluster assignments to expedite computation. Our approach builds on a recent idea of sidestepping the main bottleneck of spectral clustering, i.e., computing the graph eigenvectors, by using fast Chebyshev graph filtering of random signals. We show that the proposed algorithm achieves clustering assignments with quality approximating that of spectral clustering and that it can yield significant complexity benefits when the graph dynamics are appropriately bounded.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.