Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dynamics over Signed Networks

Published 11 Jun 2017 in cs.SI | (1706.03362v3)

Abstract: A signed network is a network with each link associated with a positive or negative sign. Models for nodes interacting over such signed networks, where two different types of interactions take place along the positive and negative links, respectively, arise from various biological, social, political, and economic systems. As modifications to the conventional DeGroot dynamics for positive links, two basic types of negative interactions along negative links, namely the opposing rule and the repelling rule, have been proposed and studied in the literature. This paper reviews a few fundamental convergence results for such dynamics over deterministic or random signed networks under a unified algebraic-graphical method. We show that a systematic tool of studying node state evolution over signed networks can be obtained utilizing generalized Perron-Frobenius theory, graph theory, and elementary algebraic recursions.

Citations (94)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.