Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Signed Network Modeling Based on Structural Balance Theory (1710.09485v3)

Published 25 Oct 2017 in cs.SI and physics.soc-ph

Abstract: The modeling of networks, specifically generative models, have been shown to provide a plethora of information about the underlying network structures, as well as many other benefits behind their construction. Recently there has been a considerable increase in interest for the better understanding and modeling of networks, but the vast majority of this work has been for unsigned networks. However, many networks can have positive and negative links(or signed networks), especially in online social media, and they inherently have properties not found in unsigned networks due to the added complexity. Specifically, the positive to negative link ratio and the distribution of signed triangles in the networks are properties that are unique to signed networks and would need to be explicitly modeled. This is because their underlying dynamics are not random, but controlled by social theories, such as Structural Balance Theory, which loosely states that users in social networks will prefer triadic relations that involve less tension. Therefore, we propose a model based on Structural Balance Theory and the unsigned Transitive Chung-Lu model for the modeling of signed networks. Our model introduces two parameters that are able to help maintain the positive link ratio and proportion of balanced triangles. Empirical experiments on three real-world signed networks demonstrate the importance of designing models specific to signed networks based on social theories to obtain better performance in maintaining signed network properties while generating synthetic networks.

Citations (48)

Summary

We haven't generated a summary for this paper yet.