Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Feature Learning for Writer Identification and Writer Retrieval (1705.09369v3)

Published 25 May 2017 in cs.CV

Abstract: Deep Convolutional Neural Networks (CNN) have shown great success in supervised classification tasks such as character classification or dating. Deep learning methods typically need a lot of annotated training data, which is not available in many scenarios. In these cases, traditional methods are often better than or equivalent to deep learning methods. In this paper, we propose a simple, yet effective, way to learn CNN activation features in an unsupervised manner. Therefore, we train a deep residual network using surrogate classes. The surrogate classes are created by clustering the training dataset, where each cluster index represents one surrogate class. The activations from the penultimate CNN layer serve as features for subsequent classification tasks. We evaluate the feature representations on two publicly available datasets. The focus lies on the ICDAR17 competition dataset on historical document writer identification (Historical-WI). We show that the activation features trained without supervision are superior to descriptors of state-of-the-art writer identification methods. Additionally, we achieve comparable results in the case of handwriting classification using the ICFHR16 competition dataset on historical Latin script types (CLaMM16).

Citations (81)

Summary

We haven't generated a summary for this paper yet.