Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bidirectional Beam Search: Forward-Backward Inference in Neural Sequence Models for Fill-in-the-Blank Image Captioning (1705.08759v1)

Published 24 May 2017 in cs.CV

Abstract: We develop the first approximate inference algorithm for 1-Best (and M-Best) decoding in bidirectional neural sequence models by extending Beam Search (BS) to reason about both forward and backward time dependencies. Beam Search (BS) is a widely used approximate inference algorithm for decoding sequences from unidirectional neural sequence models. Interestingly, approximate inference in bidirectional models remains an open problem, despite their significant advantage in modeling information from both the past and future. To enable the use of bidirectional models, we present Bidirectional Beam Search (BiBS), an efficient algorithm for approximate bidirectional inference.To evaluate our method and as an interesting problem in its own right, we introduce a novel Fill-in-the-Blank Image Captioning task which requires reasoning about both past and future sentence structure to reconstruct sensible image descriptions. We use this task as well as the Visual Madlibs dataset to demonstrate the effectiveness of our approach, consistently outperforming all baseline methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Qing Sun (44 papers)
  2. Stefan Lee (62 papers)
  3. Dhruv Batra (160 papers)
Citations (40)