Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Optimal Cost Selection for Distributionally Robust Optimization (1705.07152v3)

Published 19 May 2017 in stat.ML

Abstract: Recently, (Blanchet, Kang, and Murhy 2016, and Blanchet, and Kang 2017) showed that several machine learning algorithms, such as square-root Lasso, Support Vector Machines, and regularized logistic regression, among many others, can be represented exactly as distributionally robust optimization (DRO) problems. The distributional uncertainty is defined as a neighborhood centered at the empirical distribution. We propose a methodology which learns such neighborhood in a natural data-driven way. We show rigorously that our framework encompasses adaptive regularization as a particular case. Moreover, we demonstrate empirically that our proposed methodology is able to improve upon a wide range of popular machine learning estimators.

Citations (41)

Summary

We haven't generated a summary for this paper yet.