Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardware-Software Codesign of Accurate, Multiplier-free Deep Neural Networks (1705.04288v1)

Published 11 May 2017 in cs.NE

Abstract: While Deep Neural Networks (DNNs) push the state-of-the-art in many machine learning applications, they often require millions of expensive floating-point operations for each input classification. This computation overhead limits the applicability of DNNs to low-power, embedded platforms and incurs high cost in data centers. This motivates recent interests in designing low-power, low-latency DNNs based on fixed-point, ternary, or even binary data precision. While recent works in this area offer promising results, they often lead to large accuracy drops when compared to the floating-point networks. We propose a novel approach to map floating-point based DNNs to 8-bit dynamic fixed-point networks with integer power-of-two weights with no change in network architecture. Our dynamic fixed-point DNNs allow different radix points between layers. During inference, power-of-two weights allow multiplications to be replaced with arithmetic shifts, while the 8-bit fixed-point representation simplifies both the buffer and adder design. In addition, we propose a hardware accelerator design to achieve low-power, low-latency inference with insignificant degradation in accuracy. Using our custom accelerator design with the CIFAR-10 and ImageNet datasets, we show that our method achieves significant power and energy savings while increasing the classification accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hokchhay Tann (9 papers)
  2. Soheil Hashemi (8 papers)
  3. Iris Bahar (1 paper)
  4. Sherief Reda (26 papers)
Citations (73)