Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Model Complexity-Accuracy Trade-off for a Convolutional Neural Network (1705.03338v1)

Published 9 May 2017 in cs.CV and cs.AI

Abstract: Convolutional Neural Networks(CNN) has had a great success in the recent past, because of the advent of faster GPUs and memory access. CNNs are really powerful as they learn the features from data in layers such that they exhibit the structure of the V-1 features of the human brain. A huge bottleneck, in this case, is that CNNs are very large and have a very high memory footprint, and hence they cannot be employed on devices with limited storage such as mobile phone, IoT etc. In this work, we study the model complexity versus accuracy trade-off on MNSIT dataset, and give a concrete framework for handling such a problem, given the worst case accuracy that a system can tolerate. In our work, we reduce the model complexity by 236 times, and memory footprint by 19.5 times compared to the base model while achieving worst case accuracy threshold.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.