Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AirDraw: Leveraging Smart Watch Motion Sensors for Mobile Human Computer Interactions (1705.02689v1)

Published 7 May 2017 in cs.CV, cs.AI, cs.HC, and stat.ML

Abstract: Wearable computing is one of the fastest growing technologies today. Smart watches are poised to take over at least of half the wearable devices market in the near future. Smart watch screen size, however, is a limiting factor for growth, as it restricts practical text input. On the other hand, wearable devices have some features, such as consistent user interaction and hands-free, heads-up operations, which pave the way for gesture recognition methods of text entry. This paper proposes a new text input method for smart watches, which utilizes motion sensor data and machine learning approaches to detect letters written in the air by a user. This method is less computationally intensive and less expensive when compared to computer vision approaches. It is also not affected by lighting factors, which limit computer vision solutions. The AirDraw system prototype developed to test this approach is presented. Additionally, experimental results close to 71% accuracy are presented.

Citations (39)

Summary

We haven't generated a summary for this paper yet.