Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hidden space reconstruction inspires link prediction in complex networks (1705.02199v1)

Published 25 Mar 2017 in cs.SI, physics.data-an, and physics.soc-ph

Abstract: As a fundamental challenge in vast disciplines, link prediction aims to identify potential links in a network based on the incomplete observed information, which has broad applications ranging from uncovering missing protein-protein interaction to predicting the evolution of networks. One of the most influential methods rely on similarity indices characterized by the common neighbors or its variations. We construct a hidden space mapping a network into Euclidean space based solely on the connection structures of a network. Compared with real geographical locations of nodes, our reconstructed locations are in conformity with those real ones. The distances between nodes in our hidden space could serve as a novel similarity metric in link prediction. In addition, we hybrid our hidden space method with other state-of-the-art similarity methods which substantially outperforms the existing methods on the prediction accuracy. Hence, our hidden space reconstruction model provides a fresh perspective to understand the network structure, which in particular casts a new light on link prediction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.