Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sufficient Markov Decision Processes with Alternating Deep Neural Networks (1704.07531v2)

Published 25 Apr 2017 in stat.ME, math.ST, stat.ML, and stat.TH

Abstract: Advances in mobile computing technologies have made it possible to monitor and apply data-driven interventions across complex systems in real time. Markov decision processes (MDPs) are the primary model for sequential decision problems with a large or indefinite time horizon. Choosing a representation of the underlying decision process that is both Markov and low-dimensional is non-trivial. We propose a method for constructing a low-dimensional representation of the original decision process for which: 1. the MDP model holds; 2. a decision strategy that maximizes mean utility when applied to the low-dimensional representation also maximizes mean utility when applied to the original process. We use a deep neural network to define a class of potential process representations and estimate the process of lowest dimension within this class. The method is illustrated using data from a mobile study on heavy drinking and smoking among college students.

Citations (3)

Summary

We haven't generated a summary for this paper yet.