Papers
Topics
Authors
Recent
Search
2000 character limit reached

Twistor theory at fifty: from contour integrals to twistor strings

Published 24 Apr 2017 in hep-th, gr-qc, math.DG, and nlin.SI | (1704.07464v2)

Abstract: We review aspects of twistor theory, its aims and achievements spanning thelast five decades. In the twistor approach, space--time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex three--fold -- the twistor space. After giving an elementary construction of this space we demonstrate how solutions to linear and nonlinear equations of mathematical physics: anti-self-duality (ASD) equations on Yang--Mills, or conformal curvature can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang--Mills, and gravitational instantons which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of ASD Yang--Mills equations, and Einstein--Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally we discuss the Newtonian limit of twistor theory, and its possible role in Penrose's proposal for a role of gravity in quantum collapse of a wave function.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.