Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust Wirtinger Flow for Phase Retrieval with Arbitrary Corruption

Published 20 Apr 2017 in stat.ML and cs.LG | (1704.06256v2)

Abstract: We consider the robust phase retrieval problem of recovering the unknown signal from the magnitude-only measurements, where the measurements can be contaminated by both sparse arbitrary corruption and bounded random noise. We propose a new nonconvex algorithm for robust phase retrieval, namely Robust Wirtinger Flow to jointly estimate the unknown signal and the sparse corruption. We show that our proposed algorithm is guaranteed to converge linearly to the unknown true signal up to a minimax optimal statistical precision in such a challenging setting. Compared with existing robust phase retrieval methods, we achieve an optimal sample complexity of $O(n)$ in both noisy and noise-free settings. Thorough experiments on both synthetic and real datasets corroborate our theory.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.