Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extreme values of the Riemann zeta function and its argument (1704.06158v3)

Published 20 Apr 2017 in math.NT

Abstract: We combine our version of the resonance method with certain convolution formulas for $\zeta(s)$ and $\log\, \zeta(s)$. This leads to a new $\Omega$ result for $|\zeta(1/2+it)|$: The maximum of $|\zeta(1/2+it)|$ on the interval $1 \le t \le T$ is at least $\exp\left((1+o(1)) \sqrt{\log T \log\log\log T/\log\log T}\right)$. We also obtain conditional results for $S(t):=1/\pi$ times the argument of $\zeta(1/2+it)$ and $S_1(t):=\int_0t S(\tau)d\tau$. On the Riemann hypothesis, the maximum of $|S(t)|$ is at least $c \sqrt{\log T \log\log\log T/\log\log T}$ and the maximum of $S_1(t)$ is at least $c_1 \sqrt{\log T \log\log\log T/(\log\log T)3}$ on the interval $T{\beta} \le t \le T$ whenever $0\le \beta < 1$.

Summary

We haven't generated a summary for this paper yet.