Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

O$^2$TD: (Near)-Optimal Off-Policy TD Learning (1704.05147v2)

Published 17 Apr 2017 in cs.LG and stat.ML

Abstract: Temporal difference learning and Residual Gradient methods are the most widely used temporal difference based learning algorithms; however, it has been shown that none of their objective functions is optimal w.r.t approximating the true value function $V$. Two novel algorithms are proposed to approximate the true value function $V$. This paper makes the following contributions: (1) A batch algorithm that can help find the approximate optimal off-policy prediction of the true value function $V$. (2) A linear computational cost (per step) near-optimal algorithm that can learn from a collection of off-policy samples. (3) A new perspective of the emphatic temporal difference learning which bridges the gap between off-policy optimality and off-policy stability.

Summary

We haven't generated a summary for this paper yet.