Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An entity-driven recursive neural network model for chinese discourse coherence modeling (1704.04336v1)

Published 14 Apr 2017 in cs.CL

Abstract: Chinese discourse coherence modeling remains a challenge taskin Natural Language Processing field.Existing approaches mostlyfocus on the need for feature engineering, whichadoptthe sophisticated features to capture the logic or syntactic or semantic relationships acrosssentences within a text.In this paper, we present an entity-drivenrecursive deep modelfor the Chinese discourse coherence evaluation based on current English discourse coherenceneural network model. Specifically, to overcome the shortage of identifying the entity(nouns) overlap across sentences in the currentmodel, Our combined modelsuccessfully investigatesthe entities information into the recursive neural network freamework.Evaluation results on both sentence ordering and machine translation coherence rating task show the effectiveness of the proposed model, which significantly outperforms the existing strong baseline.

Citations (5)

Summary

We haven't generated a summary for this paper yet.