Papers
Topics
Authors
Recent
2000 character limit reached

Sparse Bayesian vector autoregressions in huge dimensions

Published 11 Apr 2017 in stat.CO, econ.EM, stat.AP, and stat.ME | (1704.03239v3)

Abstract: We develop a Bayesian vector autoregressive (VAR) model with multivariate stochastic volatility that is capable of handling vast dimensional information sets. Three features are introduced to permit reliable estimation of the model. First, we assume that the reduced-form errors in the VAR feature a factor stochastic volatility structure, allowing for conditional equation-by-equation estimation. Second, we apply recently developed global-local shrinkage priors to the VAR coefficients to cure the curse of dimensionality. Third, we utilize recent innovations to efficiently sample from high-dimensional multivariate Gaussian distributions. This makes simulation-based fully Bayesian inference feasible when the dimensionality is large but the time series length is moderate. We demonstrate the merits of our approach in an extensive simulation study and apply the model to US macroeconomic data to evaluate its forecasting capabilities.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.