Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WRPN: Training and Inference using Wide Reduced-Precision Networks (1704.03079v1)

Published 10 Apr 2017 in cs.LG, cs.AI, cs.CV, and cs.NE

Abstract: For computer vision applications, prior works have shown the efficacy of reducing the numeric precision of model parameters (network weights) in deep neural networks but also that reducing the precision of activations hurts model accuracy much more than reducing the precision of model parameters. We study schemes to train networks from scratch using reduced-precision activations without hurting the model accuracy. We reduce the precision of activation maps (along with model parameters) using a novel quantization scheme and increase the number of filter maps in a layer, and find that this scheme compensates or surpasses the accuracy of the baseline full-precision network. As a result, one can significantly reduce the dynamic memory footprint, memory bandwidth, computational energy and speed up the training and inference process with appropriate hardware support. We call our scheme WRPN - wide reduced-precision networks. We report results using our proposed schemes and show that our results are better than previously reported accuracies on ILSVRC-12 dataset while being computationally less expensive compared to previously reported reduced-precision networks.

Citations (12)

Summary

We haven't generated a summary for this paper yet.