Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Encoder Based Lifelong Learning (1704.01920v1)

Published 6 Apr 2017 in cs.CV, cs.AI, and stat.ML

Abstract: This paper introduces a new lifelong learning solution where a single model is trained for a sequence of tasks. The main challenge that vision systems face in this context is catastrophic forgetting: as they tend to adapt to the most recently seen task, they lose performance on the tasks that were learned previously. Our method aims at preserving the knowledge of the previous tasks while learning a new one by using autoencoders. For each task, an under-complete autoencoder is learned, capturing the features that are crucial for its achievement. When a new task is presented to the system, we prevent the reconstructions of the features with these autoencoders from changing, which has the effect of preserving the information on which the previous tasks are mainly relying. At the same time, the features are given space to adjust to the most recent environment as only their projection into a low dimension submanifold is controlled. The proposed system is evaluated on image classification tasks and shows a reduction of forgetting over the state-of-the-art

Citations (301)

Summary

We haven't generated a summary for this paper yet.