Papers
Topics
Authors
Recent
Search
2000 character limit reached

Folner tilings for actions of amenable groups

Published 3 Apr 2017 in math.DS, math.GR, and math.OA | (1704.00699v2)

Abstract: We show that every probability-measure-preserving action of a countable amenable group G can be tiled, modulo a null set, using finitely many finite subsets of G ("shapes") with prescribed approximate invariance so that the collection of tiling centers for each shape is Borel. This is a dynamical version of the Downarowicz--Huczek--Zhang tiling theorem for countable amenable groups and strengthens the Ornstein--Weiss Rokhlin lemma. As an application we prove that, for every countably infinite amenable group G, the crossed product of a generic free minimal action of G on the Cantor set is Z-stable.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.