Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How much is Wikipedia Lagging Behind News? (1703.10345v1)

Published 30 Mar 2017 in cs.IR

Abstract: Wikipedia, rich in entities and events, is an invaluable resource for various knowledge harvesting, extraction and mining tasks. Numerous resources like DBpedia, YAGO and other knowledge bases are based on extracting entity and event based knowledge from it. Online news, on the other hand, is an authoritative and rich source for emerging entities, events and facts relating to existing entities. In this work, we study the creation of entities in Wikipedia with respect to news by studying how entity and event based information flows from news to Wikipedia. We analyze the lag of Wikipedia (based on the revision history of the English Wikipedia) with 20 years of \emph{The New York Times} dataset (NYT). We model and analyze the lag of entities and events, namely their first appearance in Wikipedia and in NYT, respectively. In our extensive experimental analysis, we find that almost 20\% of the external references in entity pages are news articles encoding the importance of news to Wikipedia. Second, we observe that the entity-based lag follows a normal distribution with a high standard deviation, whereas the lag for news-based events is typically very low. Finally, we find that events are responsible for creation of emergent entities with as many as 12\% of the entities mentioned in the event page are created after the creation of the event page.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Besnik Fetahu (27 papers)
  2. Abhijit Anand (10 papers)
  3. Avishek Anand (81 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.