Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite Mixtures of Skewed Matrix Variate Distributions (1703.08882v3)

Published 26 Mar 2017 in stat.ME and stat.CO

Abstract: Clustering is the process of finding underlying group structures in data. Although mixture model-based clustering is firmly established in the multivariate case, there is a relative paucity of work on matrix variate distributions and none for clustering with mixtures of skewed matrix variate distributions. Four finite mixtures of skewed matrix variate distributions are considered. Parameter estimation is carried out using an expectation-conditional maximization algorithm, and both simulated and real data are used for illustration.

Summary

We haven't generated a summary for this paper yet.