An Accelerated Analog Neuromorphic Hardware System Emulating NMDA- and Calcium-Based Non-Linear Dendrites
Abstract: This paper presents an extension of the BrainScaleS accelerated analog neuromorphic hardware model. The scalable neuromorphic architecture is extended by the support for multi-compartment models and non-linear dendrites. These features are part of a \SI{65}{\nano\meter} prototype ASIC. It allows to emulate different spike types observed in cortical pyramidal neurons: NMDA plateau potentials, calcium and sodium spikes. By replicating some of the structures of these cells, they can be configured to perform coincidence detection within a single neuron. Built-in plasticity mechanisms can modify not only the synaptic weights, but also the dendritic synaptic composition to efficiently train large multi-compartment neurons. Transistor-level simulations demonstrate the functionality of the analog implementation and illustrate analogies to biological measurements.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.