Papers
Topics
Authors
Recent
Search
2000 character limit reached

CLTune: A Generic Auto-Tuner for OpenCL Kernels

Published 19 Mar 2017 in cs.PF, cs.AI, and cs.DC | (1703.06503v1)

Abstract: This work presents CLTune, an auto-tuner for OpenCL kernels. It evaluates and tunes kernel performance of a generic, user-defined search space of possible parameter-value combinations. Example parameters include the OpenCL workgroup size, vector data-types, tile sizes, and loop unrolling factors. CLTune can be used in the following scenarios: 1) when there are too many tunable parameters to explore manually, 2) when performance portability across OpenCL devices is desired, or 3) when the optimal parameters change based on input argument values (e.g. matrix dimensions). The auto-tuner is generic, easy to use, open-source, and supports multiple search strategies including simulated annealing and particle swarm optimisation. CLTune is evaluated on two GPU case-studies inspired by the recent successes in deep learning: 2D convolution and matrix-multiplication (GEMM). For 2D convolution, we demonstrate the need for auto-tuning by optimizing for different filter sizes, achieving performance on-par or better than the state-of-the-art. For matrix-multiplication, we use CLTune to explore a parameter space of more than two-hundred thousand configurations, we show the need for device-specific tuning, and outperform the clBLAS library on NVIDIA, AMD and Intel GPUs.

Citations (116)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.