Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quantum Algorithms for Fixed Qubit Architectures (1703.06199v1)

Published 17 Mar 2017 in quant-ph

Abstract: Gate model quantum computers with too many qubits to be simulated by available classical computers are about to arrive. We present a strategy for programming these devices without error correction or compilation. This means that the number of logical qubits is the same as the number of qubits on the device. The hardware determines which pairs of qubits can be addressed by unitary operators. The goal is to build quantum states that solve computational problems such as maximizing a combinatorial objective function or minimizing a Hamiltonian. These problems may not fit naturally on the physical layout of the qubits. Our algorithms use a sequence of parameterized unitaries that sit on the qubit layout to produce quantum states depending on those parameters. Measurements of the objective function (or Hamiltonian) guide the choice of new parameters with the goal of moving the objective function up (or lowering the energy). As an example we consider finding approximate solutions to MaxCut on 3-regular graphs whereas the hardware is physical qubits laid out on a rectangular grid. We prove that the lowest depth version of the Quantum Approximate Optimization Algorithm will achieve an approximation ratio of at least 0.5293 on all large enough instances which beats random guessing (0.5). We open up the algorithm to have different parameters for each single qubit $X$ rotation and for each $ZZ$ interaction associated with the nearest neighbor interactions on the grid. Small numerical experiments indicate that an enveloping classical algorithm can be used to find the parameters which sit on the grid to optimize an objective function with a different connectivity. We discuss strategies for finding good parameters but offer no evidence yet that the proposed approach can beat the best classical algorithms. Ultimately the strength of this approach will be determined by running on actual hardware.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.