Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the Performance of Deep Quantum Optimization Algorithms with Continuous Gate Sets (2005.05275v1)

Published 11 May 2020 in quant-ph

Abstract: Variational quantum algorithms are believed to be promising for solving computationally hard problems and are often comprised of repeated layers of quantum gates. An example thereof is the quantum approximate optimization algorithm (QAOA), an approach to solve combinatorial optimization problems on noisy intermediate-scale quantum (NISQ) systems. Gaining computational power from QAOA critically relies on the mitigation of errors during the execution of the algorithm, which for coherence-limited operations is achievable by reducing the gate count. Here, we demonstrate an improvement of up to a factor of 3 in algorithmic performance as measured by the success probability, by implementing a continuous hardware-efficient gate set using superconducting quantum circuits. This gate set allows us to perform the phase separation step in QAOA with a single physical gate for each pair of qubits instead of decomposing it into two C$Z$-gates and single-qubit gates. With this reduced number of physical gates, which scales with the number of layers employed in the algorithm, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances mapped onto three and seven qubits, using up to a total of 399 operations and up to 9 layers. Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.

Citations (61)

Summary

We haven't generated a summary for this paper yet.