Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Learning for Structured Prediction Energy Networks (1703.05667v2)

Published 16 Mar 2017 in stat.ML and cs.LG

Abstract: Structured Prediction Energy Networks (SPENs) are a simple, yet expressive family of structured prediction models (Belanger and McCallum, 2016). An energy function over candidate structured outputs is given by a deep network, and predictions are formed by gradient-based optimization. This paper presents end-to-end learning for SPENs, where the energy function is discriminatively trained by back-propagating through gradient-based prediction. In our experience, the approach is substantially more accurate than the structured SVM method of Belanger and McCallum (2016), as it allows us to use more sophisticated non-convex energies. We provide a collection of techniques for improving the speed, accuracy, and memory requirements of end-to-end SPENs, and demonstrate the power of our method on 7-Scenes image denoising and CoNLL-2005 semantic role labeling tasks. In both, inexact minimization of non-convex SPEN energies is superior to baseline methods that use simplistic energy functions that can be minimized exactly.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. David Belanger (25 papers)
  2. Bishan Yang (8 papers)
  3. Andrew McCallum (132 papers)
Citations (136)
X Twitter Logo Streamline Icon: https://streamlinehq.com